BioDynaMo Large-Scale Antimatter Simulation

Description

Deliver a self-contained BioDynaMo module and research prototype that enables validated, reproducible simulations of charged antiparticle ensembles in Penning-trap-like geometries at scales beyond existing demonstrations. The project generalizes prior BioDynaMo Penning-trap work into a reusable, documented, and scalable module suitable for antimatter-motivated studies and other charged-particle systems.

The student will extend BioDynaMo with a focused set of features (pluginized force models, neighbor search tuned for charged particles, elastic runtime hooks, and analysis/visualization pipelines), validate the models on canonical testcases (single-particle motion, small plasma modes), and demonstrate scaling and scientific workflows up to the largest feasible size within available resources. BioDynaMo already provides an agent/plugin API, parallel execution (OpenMP), and visualization hooks (ParaView/VTK). A prior intern report demonstrates a Penning-trap proof-of-concept and identifies directions for extension (custom forces, multi-scale runs, hierarchical models, CI, containerization)[1].

Engineering Goals

Physics/Scientific Goals

Expected Results

Requirements

AI Policy

AI assistance is allowed for this contribution. The applicant takes full responsibility for all code and results, disclosing AI use for non-routine tasks (algorithm design, architecture, complex problem-solving). Routine tasks (grammar, formatting, style) do not require disclosure.

How to Apply

In addition to reaching out to the mentors by email, prospective candidates are required to complete this form

Mentors

Additional Information

Corresponding Project

Participating Organizations